Conceitos Básicos

2.1 Atenuação por Chuvas em Enlaces Rádio

A precipitação de partículas atmosféricas (chuva, granizo e neve úmida) provoca absorção e espalhamento da energia eletromagnética em propagação, quando o tamanho das partículas é da ordem de grandeza do comprimento de onda. Além disto, em freqüências elevadas, ocorre absorção por gases atmosféricos, nevoeiro e nuvens.

As moléculas de vapor d'água e o oxigênio são os principais responsáveis pela absorção na atmosfera, sendo crítica a absorção na faixa de 23 GHz pelo vapor d'água e 60 GHz pelo oxigênio. O método atualmente recomendado pelo UIT-R [1] permite calcular as perdas por absorção com uma boa precisão.

Fora destas faixas de freqüência a absorção por gases é pouco relevante e a atenuação por hidrometeoros, principalmente a chuva, torna-se o principal fator limitante de desempenho a ser levado em conta no dimensionamento do enlace. A atenuação na energia propagante cresce à medida que o comprimento de onda aproxima-se do tamanho das gotas de chuva, ou seja, quando a freqüência cresce, produzindo um aumento na atenuação do sinal pela presença da chuva. As gotas de chuva comportam-se como um meio dissipativo para o campo elétrico incidente e, além da absorção, provocam espalhamento da energia em várias direções [2]. A absorção é ocasionada pela dissipação térmica da energia da onda incidente em função da condutividade da água. O espalhamento está associado às modificações na geometria da frente de onda, satisfazendo as condições de contorno sobre cada gota [3].

A figura 1 [3] mostra a atenuação específica (dB/Km) provocada em ondas de rádio pela chuva, nevoreiro, oxigênio e vapor d'água. A atenuação por chuvas aumenta com a intensidade da chuva (expressa pela taxa de precipitação em mm/h) e com a freqüência, até a saturação acima de 100 GHz. A atenuação por nevoeiro também cresce com a freqüência e é equivalente à provocada por chuva

muito leve. Já a absorção por oxigênio e vapor d'água apresenta picos acentuados nas freqüências de ressonância das moléculas destas substâncias. Os primeiros picos de abosorção estão em torno de 23 GHz para o vapor d'água e 60 GHz para o oxigênio.

Figura 1 – Atenuação por chuvas (A), fog (B) e gases atmosféricos (C)

Ao longo do tempo, foram desenvovidas formulações matemáticas rigorosas para o cálculo da atenuação específica. Entretanto, a utilização destas formulações necessárias torna extremamente complexo o cálculo da atenuação. Formulações empíricas alternativas, que expressam a atenuação específica de forma simples, em função da taxa de precipitação, freqüência e polarização da onda, são as mais utilizadas em aplicações práticas. Ambas as formulações são descritas de forma resumida na seção seguinte, com maiores detalhes apresentados em Apêndices deste trabalho. O capítulo apresenta ainda os métodos recomendados pelo UIT-R, para cálculo da atenuação específica e para a determinação da taxa de precipitação, necessária para este cálculo, em qualquer região o mundo.

2.2 Cálculo da Atenuação Específica

2.2.1

Método Teórico Rigoroso

O campo médio transmitido por um espalhador discreto, aleatório, de comprimento *l* e índice de refração volumétrico $\eta \approx 1$, é [4-10] :

$$\left\langle \vec{E}(\vec{r},t) \right\rangle = e^{-j\kappa l(\eta-1)} \vec{E}_i(\vec{r},t)$$
(2.1)

onde $\vec{E}_i(\vec{r},t) = E_i(\vec{r})e^{i2\pi ft}$ é a onda incidente.

Logo, a atenuação (A'), em dB, será:

$$A = 20\log\frac{\left|\langle \vec{E} \rangle\right|}{\left|\vec{E}_{i}\right|} = 20\log\frac{\left|e^{-i\kappa l(\eta-1)}\vec{E}_{i}(\vec{r},t)\right|}{\left|\vec{E}_{i}(\vec{r},t)\right|} = 20\log\frac{\left|e^{-i\kappa l(\eta-1)}\right|\left|\vec{E}_{i}(\vec{r},t)\right|}{\left|\vec{E}_{i}(\vec{r},t)\right|}$$
$$A = 20\log\left|e^{-i\kappa l(\eta-1)}\right| = 20\log\left|e^{-i\kappa l\left[(\operatorname{Re}\eta+1)+i\operatorname{Im}(\eta)\right]}\right| = 20\ \kappa l\operatorname{Im}(\eta)\log\ e \quad (2.2)$$

Assim, a atenuação específica, que é definida por $\gamma = A / l$, em dB, é dada por:

$$\gamma = \frac{A'}{l} = 20\kappa \operatorname{Im}(\eta) \log e \tag{2.3}$$

substituindo log $e = \frac{\ln e}{\ln 10} = \frac{1}{\ln 10}$, tem-se :

$$\gamma = \frac{20\kappa \operatorname{Im}(\eta)}{\ln 10}$$
(2.4)

O índice de refração volumétrico, para um meio com espalhadores dispersamente distribuídos, é dado com muita precisão pelo Teorema do Espalhamento Múltiplo como:

$$\eta = 1 - i \frac{2\pi}{\kappa^3} \int_0^\infty S(0, D) N(D) dD$$
(2.5)

onde $s(0,D) = -i\kappa \vec{r}(\hat{i},\hat{i}) \cdot \hat{e}_i$ é a amplitude de espalhamento frontal e N(D)dD é a densidade numérica das gotas de chuva com diâmetro D em um intervalo dD.

Utilizando o Teorema do Espalhamento Frontal ($\sigma_t = Q_t(D) = 4\pi/\kappa^2$ Re [S(0,D)]) [5] :

$$\eta = 1 - i \frac{2\pi}{\kappa^3} \int_0^\infty S(0, D) N(D) dD = 1 - i \frac{2\pi}{\kappa^3} \int_0^\infty \{ \operatorname{Re}[S(0, D)] + i \operatorname{Im}[S(0, D)] \} N(D) dD$$
$$\eta = \left[1 + \frac{2\pi}{\kappa^3} \int_0^\infty \operatorname{Im}[S(0, D)] N(D) dD \right] - i \frac{2\pi}{\kappa^3} \int_0^\infty \operatorname{Re}[S(0, D)] N(D) dD$$

$$\operatorname{Im}(\eta) = \frac{2\pi}{\kappa^3} \int_0^\infty \operatorname{Re}[S(0,D)] N(D)$$
(2.6)

Então:

$$A = \frac{20\kappa \operatorname{Im}(\eta)}{\ln 10} = \frac{20\kappa \frac{2\pi}{\kappa^3} \int_{0}^{\infty} \operatorname{Re}[S(0,D)]N(D)dD}{\ln 10} = \frac{\frac{40\pi}{\kappa^2} \int_{0}^{\infty} \frac{\kappa^2}{4\pi} Q_t(D)N(D)dD}{\ln 10}$$
$$A = \frac{10}{\ln 10} \int_{0}^{\infty} Q_t(D)N(D)dD \Rightarrow \gamma = 4,343 \int_{0}^{\infty} Q_t(D)N(D)dD \qquad (2.7)$$

onde :

 $Q_t(D)$ é a Seção Reta de Espalhamento Total, de diâmetro D, em cm² N(D) é a Distribuição de Tamanho de Gotas de Chuva em $\frac{1}{m^3 mm}$

2.2.2 Características dos Espalhadores

É razoável assumir que a forma da gota de chuva é esférica, exceto para chuvas fortes onde a ação da força gravitacional, aliada ao efeito do vento, faz com que grandes gotas assumam a forma de esferóide oblato, inclinado em relação à direção de queda [4].

A distribuição do tamanho de gota de chuva depende da taxa de precipitação, normalmente fornecida em mm/h, variando entre 0,01 e 6 mm, tendo uma dependência com a velocidade e diâmetro da gota. Conhecida a distribuição do tamanho das gotas e sua velocidade terminal de queda, a taxa de precipitação pode ser calculada por:

$$p = 3600 \frac{4}{3} \pi \int_{0}^{\infty} v(a) N(p,a) a^{3} da = 1,51 \times 10^{7} \int_{0}^{\infty} v(a) N(p,a) a^{3} da$$
(2.8)

onde v(a) é a velocidade final da gota de chuva , em m/s; N (p,a) o número de gotas por unidade de volume, m^3 ; a é o raio da gota de chuva, em m.

Alguns valores típicos de taxa de precipitação para região de clima temperado são : 0,25 mm/h (garoa), 1 mm/h (chuva branda), 4 mm/h (chuva moderada), 16 mm/h (chuva forte) e 100 mm/h (chuva extremamente forte).

A velocidade final da gota varia com a altitude, e depende do raio da gota [3, 4] de acordo com a seguinte equação:

$$v(a) = 200.8a^{\frac{1}{2}}$$
 (a em metros) (2.9)

A distribuição do tamanho de gotas, N(p,a), é normalmente uma expressão empírica. Obtém-se uma boa aproximação para esta distribuição utilizando-se exponenciais negativas.

$$N(D) = N_0 e^{-\Lambda D} \quad ; \quad \Lambda = \alpha p^{-\beta} \tag{2.10}$$

Uma expressão mais geral para a distribuição de gotas seria utilizar a Distribuição Gama Modificada:

$$N(D) = \Lambda_1 D^p e^{-\Lambda_2 D^q}$$
(2.11)

A distribuição de Laws e Parsons é uma distribuição tabelada e amplamente utilizada para climas temperados, embora a distribuição de gotas seja melhor descrita por uma distribuição exponencial negativa como a distribuição de Marshall-Palmer [2-7]. Assim, o ajuste da distribuição de Marshall e Palmer descreve, satisfatoriamente, uma chuva estratificada para um clima temperado tropical, apesar de ter uma tendência para superestimar o número de gotas pequenas. Os parâmetros normalmente utilizados para a distribuição são N₀ = $0,008 \text{ cm}^{-4} \text{ e} \Lambda = 41 \text{R}^{-0,21} \text{ cm}^{-1}$.

Dependendo da faixa de freqüência, recomenda-se a utilização de mais de uma distribuição, de acordo com o tamanho de gotas considerado. Outro tipo de distribuição é a de Joss et al., que também é uma distribuição exponencial negativa, porém com os parâmetros: $N_0 = 0,014 \text{ cm}^{-4} \text{ e } \Lambda = 30 \text{R}^{-0,21} \text{ cm}^{-1}$ para chuva forte (temporal) [4; 5] e $N_0 = 0,3 \text{ cm}^{-4}$ e $\Lambda = 57 \text{R}^{-0,21}$ cm-1 para chuvisco [4; 5].

Considerando climas tropicais, cujas taxas de precipitação são muito altas, uma distribuição log-normal também pode descrever, satisfatoriamente, a distribuição de gotas [2], e seu uso nestes climas é recomendado para aplicações em freqüências acima de 30 GHz.

A Seção Reta de Espalhamento Total, Q_t(D), pode ser obtida através da Teoria de Mie, conforme apresentado no Anexo 1.

2.2.3 Método empírico

Apesar da precisão do método teórico, seu emprego não é prático, pois os cálculos são muito complexos. Por este motivo foi desenvolvida uma solução empírica ajustada ao modelo teórico em questão. Para aplicações práticas, a

relação entre a atenuação específica [dB/km] e a taxa de precipitação R [mm/h] adotada é a seguinte, proposta por Olsen et al [8]:

$$\gamma = aR^b \qquad [dB/km] \qquad (2.12)$$

O uso freqüente da relação aR^b para o cálculo da atenuação da chuva devese ao fato da simplicidade desta equação e do cálculo de seus parâmetros por interpolação. Por se tratar de uma formulação empírica, inicialmente os valores disponíveis dos parâmetros a e b eram experimentais e disponíveis apenas para um número limitado de freqüências de forma tabelada. Entretanto, pode-se apresentar um equacionamento para a e b, em função da freqüência, utilizando-se de regressões logarítmicas aplicadas aos cálculos de Mie para espalhadores, como mostrado no Anexo 2.

Estes parâmetros são calculados em função da freqüência, temperatura e parâmetros da distribuição de gotas de chuva [4]. Para cada valor de freqüência, distribuição de gota e temperatura pode-se, através de um ajuste por uma regressão logarítmica entre os valores plotados da atenuação e taxa de precipitação, obter uma relação do tipo $\gamma = aR^b$, onde a e b são limitados para certas faixas de freqüência [5].

Entretanto, deve haver um compromisso entre a simplicidade do cálculo da atenuação por aproximação analítica e a precisão obtida através dos cálculos da Teoria de Mie. Uma comparação entre estas duas formas de cálculo é apresentada na figura 2.

Figura 2 – Comparação entre o cálculo da atenuação usando Teoria de Mie e Aproximação Analítica. [5]

Ao analisar a figura 2, nota-se uma boa conformidade entre os dois resultados. Há uma maior diferença em torno de 60 GHz onde ocorre um pico de absorção de oxigênio, o que torna a faixa de menor interesse para comunicações.

A regressão analítica para a o cálculo dos parâmetros a e b é aplicada para oito segmentos a cada segmento de freqüência. Para distribuição de Laws e Parsons em 0° C, os valores de $a(f) \in b(f)$ são dados por:

$$a = G_a f^{E_a} \tag{2.12}$$

$$\begin{aligned} G_a &= 6,39 \times 10^{-5}; \quad E_a = 2,03; \quad para \quad f < 2,9 \; GHz \\ G_a &= 4,21 \times 10^{-5}; \quad E_a = 2,42; \quad para \quad 2,9 \leq f < 54 \; GHz \\ G_a &= 4,09 \times 10^{-2}; \quad E_a = 0,699; \; para \quad 54 \leq f < 180 \; GHz \\ E_a &= -0,151; \; para \quad f > 180 \; GHz \\ b &= G_b f^{E_b} \\ G_b &= 0,851; \quad E_b = 0,158; \quad para \quad f < 8,5 \; GHz \\ G_b &= 1,41; \quad E_b = -0,0779; \; para \quad 8,5 \leq f < 25 \; GHz \\ G_b &= 42,63; \quad E_b = -0,272; \; para \quad 25 \leq f < 164 \; GHz \\ G_b &= 0,616; \quad E_b = -0,0126; \; para \quad f > 164 \; GHz \end{aligned}$$

2 Conceitos Básicos

Na prática [12], a atenuação específica, dada pela equação (2.7), é determinada pela teoria de Mie para freqüências superiores a 3 GHz, enquanto que a aproximação de Rayleigh é usada para freqüências entre 1 e 3 GHz [2]. Considerando a distribuição de Laws e Parsons e as gotas da chuva como esferóides oblatos a 20°C, os parâmetros a e b para as polarizações vertical e horizontal são dados na tabela 1.

Freqüência (GHz)	a _H	a _V	b _H	b _V
1	0,0000387	0,0000352	0,912	0,880
2	0,000154	0,000138	0,963	0,923
4	0,000650	0,000591	1,121	1,075
6	0,00175	0,00155	1,308	1,265
7	0,00301	0,00265	1,332	1,312
8	0,00454	0,00395	1,327	1,310
10	0,0101	0,00887	1,276	1,264
12	0,0188	0,0168	1,217	1,200
15	0,0367	0,0335	1,154	1,128
20	0,0751	0,0691	1,099	1,065
25	0,124	0,113	1,061	1,030
30	0,187	0,167	1,021	1,000
35	0,263	0,233	0,979	0,963
40	0,350	0,310	0,939	0,929

Tabela 1 – Parâmetros a e b

Para polarização linear e circular, os parâmetros a e b podem ser determinados a partir de [3]:

$$a = \frac{1}{2} \left[a_{\mathrm{H}} - a_{\mathrm{V}} + \left(a_{\mathrm{H}} - a_{\mathrm{V}} \right) \cos^2 \theta \cos^2 \tau \right]$$
(2.14)

$$b = \frac{1}{2k} \Big[a_{\rm H} b_H + a_{\rm V} b_V + (a_H b_H - a_V b_V) \cos^2 \theta \cos^2 \tau \Big]$$
(2.15)

onde θ é o ângulo de elevação e τ é o ângulo de inclinação de polarização com respeito à horizontal, e igual a 45° para polarização circular.

Utiliza-se uma interpolação logarítmica para a freqüência e o parâmetro *a* ao calculá-lo em uma faixa de freqüência fora da tabela e, similarmente, para o

28

cálculo do parâmetro b, uma interpolação linear. Ou seja, se a_1 , a_2 , b_1 e b_2 correspondem aos valores nas freqüências f_1 e f_2 a serem interpolados os valores de a e b freqüência f são dados por:

$$a = \frac{1}{2} \left[a_H - a_V + \left(a_H - a_V \right) \cos^2 \theta \cos^2 \tau \right]$$
(2.16)

$$b(f) = \left[\left(b_1 - b_2 \right) \left(\frac{\log \frac{f}{f_1}}{\log \frac{f_2}{f_1}} \right) + b_2 \right]$$
(2.17)

2.2.4 Recomendação do UIT-R para o cálculo dos valores de a(f) e b(f)

Nas recomendações do UIT-R os parâmetros a(f) e b(f) são denominados coeficientes $k e \alpha$, respectivamente, sendo dependentes da freqüência e polarização.

A Recomendação do UIT-R P.838-3 [13] apresenta expressões analíticas para o cálculo desses parâmetros para freqüências entre 1 a 1000 GHz.

$$\log_{10} k = \sum_{j=1}^{4} a_j \exp\left[-\left(\frac{\log_{10} f - b_j}{c_j}\right)^2\right] + m_k \log_{10} f + c_k$$
(2.18)

$$\alpha = \sum_{j=1}^{5} a_j \exp\left[-\left(\frac{\log_{10} f - b_j}{c_j}\right)^2\right] + m_\alpha \log_{10} f + c_\alpha$$
(2.19)

em que *f* é a freqüência em GHz. São apresentados valores k_H , k_V , α_H e α_V , onde *H* e *V* correspondem às polarizações horizontal e vertical, respectivamente).

Coeficiente k _H											
j	aj	bj	c _j	m _k	c _k						
1	-5,33980	-0,10008	1,13098	-0,18961	0,71147						
2	-0,35351	1,26970	0,45400]							
3	-0,23789	0,86036	0,15354]							
4	-0,94158	0,64552	0,16817]							
Coeficiente k _v											
j	aj	bj	c _j	m _k	c_k						
1	-3,80595	0,569354	0,81061	0,67849	0,63297						
2	-3,44965	-0,22911	0,51059								
3	-0,39902	0,73042	0,11899								
4	0,50167	1,07319	0,27195								

Tabela 2 – Coeficiente k

Tabela 3 – Coeficiente α.

Coeficiente α_H										
j	aj	bj	c _j	m _k	c _k					
1	-0,14308	1,82442	-0,55187	0,67849	-1,95537					
2	0,29591	0,77564	0,19822							
3	0,32177	0,63773	0,13164							
4	-5,37610	-0,96230	1,47828							
5	16,1721	-3,29980	3,43990							
Coeficiente α_v										
j	a _j	b _j	c _j	m _k	c _k					
1	-0,07771	2,33840	-0,76284	-0,053739	0,83433					
2	0,56727	0,95545	0,54039							
3	-0,20238	1,14520	0,26809							
4	-48,2991	0,791669	0,116226							
5	48,5833	0,791459	0,116479							

2.3 Distribuições Cumulativas de Taxa de Precipitação

O valor da taxa de precipitação deve ser obtido, preferencialmente, de dados de medidas locais. Entretanto, quando não for possível obter os dados da taxa de precipitação local, deve-se procurar utilizar valores obtidos em climas similares. Numa primeira metodologia, que foi utilizada durante mais de 30 anos, o UIT-R [34] dividiu o globo em 15 (quinze) regiões climáticas, cujas distribuições de taxa de precipitação são mostradas na tabela 4.

p(%)	Α	В	C	D	Е	F	G	Н	J	K	L	М	N	Р	Q
1,0	< 0,1	0,5	0,7	2,1	0,6	1,7	3	2	8	1,5	2	4	5	12	24
0,3	0,8	2	2,8	4,5	2,4	4,5	7	4	13	4,2	7	11	15	34	49
0,1	2	3	5	8	6	8	12	10	20	12	15	22	35	65	72
0,03	5	6	9	13	12	15	20	18	28	23	33	40	65	105	96
0,01	8	12	15	19	22	28	30	32	35	42	60	63	95	145	115
0,003	14	21	26	29	41	54	45	55	55	70	105	95	140	200	142
0,001	22	32	42	42	70	78	65	83	83	100	150	120	180	250	170

Tabela 4 – Regiões climáticas de UIT-R

Os limites de cada região foram definidos pelo UIT-R [34] através de mapas, como o mostrado na figura 3, que correspondem a macro-regiões com valores de precisão limitados quando comparados com os medidos em pontos específicos. Por esse motivo, esta metodologia usando o conceito de regiões climáticas foi abandonada nos últimos anos.

Figura 3 – Antigas regiões climáticas de chuva definidas pelo UIT-R – América do Sul

Para corrigir as deficiências da metodologia original, o UIT-R [35] desenvolveu um novo método para estimativa da taxa de precipitação pontual a partir da extrapolação de medidas de precipitação acumulada em períodos de 6 horas em todo o mundo, realizadas pela Organização Meteorológica Mundial. O novo método permite estimar a taxa de precipitação excedida para uma determinada percentagem de tempo no ano em função da latitude e longitude da localidade. A título de exemplo, a figura 4 apresenta um mapa de R _{0,01} obtido a partir deste método. Entretanto, medidas feitas em regiões tropicais ainda mostram diferenças significativas entre os resultados obtidos por este método e os dados reais.

Figura 4 - Taxa de precipitação excedida durante 0,01% do tempo